Нержавеющая сталь (коррозионно-стойкие стали) — легированная сталь, устойчивая к коррозии в атмосфере и агрессивных средах.

В 1913 году Гарри Бреарли (англ. Harry Brearley), экспериментировавший с различными видами и свойствами сплавов, обнаружил способность стали с высоким содержанием хрома сопротивляться кислотной коррозии. Нержавеющие стали делят на три группы:

Коррозионностойкие стали — от них требуется стойкость к коррозии в несложных промышленных и бытовых условиях (из них можно изготавливать детали оборудования для нефтегазовой, легкой, машиностроительной промышленности, хирургические инструменты, бытовую нержавеющую посуду и тару).

Жаростойкие стали — от них требуется жаростойкость — то есть стойкость к коррозии при высоких температурах в сильно агрессивных средах (напр. на химических заводах).
Жаропрочные стали — от них требуется жаропрочность — то есть хорошая механическая прочность при высоких температурах.

Химический состав
При выборе химического состава коррозионностойкого сплава руководствуются так называемым правилом : если к металлу, неустойчивому к коррозии (например, к железу) добавлять металл, образующий с ним твердый раствор и устойчивый против коррозии (к примеру хром), то защитное действие проявляется скачкообразно при введении {\displaystyle {\frac {1}{8}},{\frac {2}{8}},{\frac {3}{8}}…{\frac {N}{8}}} {\frac {1}{8}},{\frac {2}{8}},{\frac {3}{8}}…{\frac {N}{8}} моля второго металла (коррозионная стойкость возрастает не пропорционально количеству легирующего компонента, а скачкообразно). Основной легирующий элемент нержавеющей стали — хром Cr (12-20 %); помимо хрома, нержавеющая сталь содержит элементы, сопутствующие железу в его сплавах (С, Si, Mn, S, Р),
а также элементы, вводимые в сталь для придания ей необходимых физико-механических свойств и коррозионной стойкости (Ni, Mn, Ti, Nb, Co, Mo).
Сопротивление нержавеющей стали к коррозии напрямую зависит от содержания хрома: при его содержании 13 % и выше сплавы являются нержавеющими в обычных условиях и в слабоагрессивных средах, более 17 % — коррозионностойкими и в более агрессивных окислительных и других средах, в частности, в азотной кислоте крепостью до 50 %.
Причина коррозионной стойкости нержавеющей стали объясняется, главным образом, тем, что на поверхности хромсодержащей детали, контактирующей с агрессивной средой, образуется тонкая плёнка нерастворимых окислов, при этом большое значение имеет состояние поверхности материала, отсутствие внутренних напряжений и кристаллических дефектов.
В сильных кислотах (серной, соляной, фосфорной и их смесях) применяют сложнолегированные сплавы с высоким содержанием Ni и присадками Mo, Cu, Si.
Повышенная атмосферная коррозионностойкость стали достигается, как правило, целенаправленным изменением её химического состава. Считается, что наиболее эффективно повышают сопротивление строительных сталей атмосферной коррозии небольшие добавки никеля, хрома, и особенно фосфора, и меди. Так, легирование медью в пределах 0,2-0,4 % повышает на 20-30 % стойкость против коррозии открытых конструкций в промышленной атмосфере.
Классификация
По химическому составу нержавеющие стали делятся на:
Хромистые, которые, в свою очередь, по структуре делятся на;
Мартенситные;
Полуферритные (мартенисто-ферритные);
Ферритные;
Хромоникелевые;
Аустенитные
Аустенитно-ферритные
Аустенитно-мартенситные
Аустенитно-карбидные
Хромомарганцевоникелевые (классификация совпадает с хромоникелевыми нержавеющими сталями).
Различают аустенитные нержавеющие стали, склонные к межкристаллитной коррозии, и стабилизированные — с добавками Ti и Nb. Значительное уменьшение склонности нержавеющей стали к межкристаллитной коррозии достигается снижением содержания углерода (до 0,03 %).
Нержавеющие стали, склонные к межкристаллитной коррозии, после сварки, как правило, подвергаются термической обработке.
Широкое распространение получили сплавы железа и никеля, в которых за счёт никеля аустенитная структура железа стабилизируется, а сплав превращается в слабо-магнитный материал.
Мартенситные и мартенсито-ферритные стали
Мартенситные и мартенситно-ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах (в слабых растворах солей, кислот) и имеют высокие механические свойства. В основном их используют для изделий, работающих на износ, в качестве режущего инструмента, в частности, ножей, для упругих элементов и конструкций в пищевой и химической промышленности, находящихся в контакте со слабоагрессивными средами. К этому виду относятся стали типа 30Х13, 40Х13 и т. д.
Ферритные стали
Эти стали применяют для изготовления изделий, работающих в окислительных средах (например, в растворах азотной кислоты), для бытовых приборов, в пищевой, легкой промышленности и для теплообменного оборудования в энергомашиностроении. Ферритные хромистые стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах. К этому виду относятся стали 400 серии.
Аустенитные стали
Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность. Поэтому аустенитные коррозионностойкие стали нашли широкое применение в качестве конструкционного материала в различных отраслях машиностроения. Теоретически изделия из аустенитных нержавеющих сталей при нормальных условиях — немагнитные, но после холодного деформирования (любой мехобработки) могут проявлять некоторые магнитные свойства (часть аустенита превращается в феррит). Каждый материал характеризуется способностью намагничиваться, это применимо и к нержавеющим сталям. Полностью немагнитным может быть только вакуум.
Аустенито-ферритные и аустенито-мартенситные стали
Аустенито-ферритные стали. Преимущество сталей этой группы — повышенный предел текучести по сравнению с аустенитными однофазными сталями, отсутствие склонности к росту зёрен при сохранении двухфазной структуры, меньшее содержание остродефицитного никеля и хорошая свариваемость. Аустенито-ферритные стали находят широкое применение в различных отраслях современной техники, особенно в химическом машиностроении, судостроении, авиации. К этому виду относятся, стали типа 08Х22Н6Т, 08Х21Н6М2Т, 08Х18Г8Н2Т.
Аустенито-мартенситные стали. Потребности новых отраслей современной техники в коррозионностойких сталях повышенной прочности и технологичности привели к разработке сталей мартенситного (переходного) класса. Это стали типа 07Х16Н6, 09Х15Н9Ю, 08Х17Н5М3.
Сплавы на железоникелевой и никелевой основе.
При изготовлении химической аппаратуры, особенно для работы в серной и соляной кислотах, необходимо применять сплавы с более высокой коррозионной стойкостью, чем аустенитные стали. Для этих целей используют сплавы на железноникелевой основе типа 04ХН40МТДТЮ и сплавы на никельмолибденовой основе Н70МФ, на хромоникелевой основе ХН58В и хромоникельмолибденовой основе ХН65МВ, ХН60МБ.
Производство и применение
Хромистые нержавеющие стали:
Клапаны гидравлических прессов;
Турбинные лопатки;
Арматура крекинг-установок;
Режущий инструмент;
Пружины;
Бытовые предметы;
Хромоникелевые и хромомарганцевоникелевые нержавеющие стали:
Бытовые предметы, в частности, столовая посуда (пищевые марки стали)
Ортопедическая стоматология (изготовление гильз для штампованных коронок)
Стабилизированные аустенитные нержавеющие стали:
Сварная аппаратура, работающей в агрессивных средах
Изделия, работающие при высоких температурах — 550—800 °C
Пищевая промышленность;
Нержавеющие стали используются как в деформированном, так и в литом состоянии.
Сварка нержавеющих сталей
В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 22 декабря 2015 года.
Аустенитные нержавеющие стали вроде Х18Н9, Х18Н10 (примерно из таких прокатывают листовую нержавейку) не переносят прокаливания. Прокаливание вызывает в них структурные изменения, из-за которых после прокаливания в стали начнётся межзерновая (межкристаллитная) коррозия. Межзерновая коррозия опасна ещё и тем, что не вызывает потерю товарного вида изделия, так что изделие/деталь из нержавейки, будучи по-прежнему красивым и блестящим, под нагрузкой может внезапно развалиться, расколоться, разрушиться.
Для защиты от межкристаллитной коррозии в такие нержавейки добавляют титан (Т) или ниобий (Б) в количестве 5C—0,6 %. Легированные таким образом стали обозначаются: Х18Н9Т, Х18Н9Б, Х18Н10Т, Х18Н10Б[Прим. 2].
Соответственно, аустенитные нержавейки для сварки годятся (если без последующей термообработки) те, которые с буквой «Т» или «Б» в конце.
Электросварку нержавейки можно осуществлять контактной сваркой, сваркой неплавящимся электродом (вольфрамовым электродом, с аргоном в качестве защитного газа), полуавтоматической сваркой в среде защитных газов (смесь аргона с углекислым газом), сваркой штучными (покрытыми) электродами.
Штучные (покрытые) сварочные электроды выпускаются не только из обычной («чёрной») стали (для сварки обычной стали), но и из нержавейки (напр. «УОНИИ-13НЖ») — для сварки деталей из нержавейки. Электрическое сопротивление нержавейки больше, чем эл. сопротивление обычной («чёрной») стали, поэтому сварочные электроды из нержавейки делают короче, чем электроды из обычной («чёрной») стали, так как слишком длинный нержавейковый электрод может расплавиться (сразу по всей длине) и обрушиться до того, как будет израсходован полностью.
Для приваривания детали из нержавейки к детали из обычной («чёрной») стали нужны т. н. переходные электроды. В этом случае к сварке предъявляется требование, что сварочный шов должен быть из нержавейки, поэтому нержавейка, из которой сделаны переходные электроды, имеет в своём составе повышенное (примерно в полтора раза) содержание легирующих элементов (напр. «Х25Н18…»; «Х23Н15…»). Переходные электроды имеют зелёное покрытие.
Сварочные электроды с голубым покрытием — для сварки пищевой нержавейки (баки, цистерны, трубопроводы, лопасти мешалок и т. п. для пищевой промышленности).